Abstract
Based on numerical weather prediction model Weather Research and Forecasting (WRF) and Hydrologic Modeling System (HEC-HMS), a coupling model is constructed in Taihang Piedmont basin. The WRF model parameter scheme combinations composed of microphysics, planetary boundary layers, and cumulus parameterizations suitable for the study area are optimized. In both time and space, we tested the effects of the WRF model by a multi-index evaluation system composed of relative error, root meantime square error, probability of detection, false alarm ratio, and critical success index and established this system in two stages. A multi-attribute decision-making model based on Technique for Order Preference by Similarity to an Ideal Solution and grey correlation degree is proposed to optimize each parameter scheme. Among 18 parameter scheme combinations, Mellor-Yamada-Janjic, Grell-Devinji, Purdue-Lin, Betts-Miller-Janjić, and Single-Moment6 are ideal choices according to the simulation performance in both time and space. Using the unidirectional coupling method, the rolling rainfall forecast results of the WRF model in the 24 h and 48 h forecast periods are input to HEC-HMS hydrological model to simulate three typical floods. The coupling simulation results are better than the traditional forecast method, and it prolongs the flood forecast period of the Taihang Piedmont basin.