Hydrologic Extremes in a Changing Climate: a Review of Extremes in East Africa

Abstract

Purpose

Eastern Africa has a complex hydroclimate and socio-economic context, making it vulnerable to climate change-induced hydrological extremes. This review presents recent research on drivers and typologies of extremes across different geographies and highlights challenges and improvements in forecasting hydrological extremes at various timescales.

Recent Findings

Droughts and floods remain the major challenges of the region. Recently, frequent alterations between droughts and floods have been a common occurrence and concern. Research underlines the heterogeneity of extremes and the impact of climate change as increased intensity and duration of extremes. Moreover, the importance of local and antecedent conditions in changing the characteristics of extremes is emphasized.

Summary

A better understanding of these drivers and how they interact is required. Observational and modeling tools must capture these relationships and extremes on short timescales. Although there are improvements in forecasting these extremes, providing relevant information beyond meteorological variables requires further research.

Downscaling Seasonal Precipitation Forecasts over East Africa with Deep Convolutional Neural Networks

Abstract

This study assesses the suitability of convolutional neural networks (CNNs) for downscaling precipitation over East Africa in the context of seasonal forecasting. To achieve this, we design a set of experiments that compare different CNN configurations and deployed the best-performing architecture to downscale one-month lead seasonal forecasts of June–July–August–September (JJAS) precipitation from the Nanjing University of Information Science and Technology Climate Forecast System version 1.0 (NUIST-CFS1.0) for 1982–2020. We also perform hyper-parameter optimization and introduce predictors over a larger area to include information about the main large-scale circulations that drive precipitation over the East Africa region, which improves the downscaling results. Finally, we validate the raw model and downscaled forecasts in terms of both deterministic and probabilistic verification metrics, as well as their ability to reproduce the observed precipitation extreme and spell indicator indices. The results show that the CNN-based downscaling consistently improves the raw model forecasts, with lower bias and more accurate representations of the observed mean and extreme precipitation spatial patterns. Besides, CNN-based downscaling yields a much more accurate forecast of extreme and spell indicators and reduces the significant relative biases exhibited by the raw model predictions. Moreover, our results show that CNN-based downscaling yields better skill scores than the raw model forecasts over most portions of East Africa. The results demonstrate the potential usefulness of CNN in downscaling seasonal precipitation predictions over East Africa, particularly in providing improved forecast products which are essential for end users.

Multivariate Modeling of Precipitation-Induced Home Insurance Risks Using Data Depth

Abstract

While political debates on climate change become increasingly heated, our houses and city infrastructure continue to suffer from an increasing trend of damages due to adverse atmospheric events, from heavier-than-usual rainfalls to heat waves, droughts, and floods. Adapting our homes and critical infrastructure to sustain the effects of climate dynamics requires novel data-driven interdisciplinary approaches for efficient risk mitigation. We develop a new systematic framework based on the machinery of statistical and machine learning tools to evaluate water-related home insurance risks and quantify uncertainty due to varying climate model projections. Furthermore, we introduce the concept of data depth to the analysis of weather and climate ensembles, which remains a novel territory for statistical depth methodology as well as the field of environmental risk and ensemble forecasting in general. We illustrate the new data-driven methodology for risk analysis in application to rainfall-related home insurance in the Canadian Prairies over 2002–2011.

Supplementary materials accompanying this paper appear online.

Probabilistic seasonal precipitation forecasts using quantiles of ensemble forecasts

Abstract

Seasonal precipitation forecasting is vital for weather-sensitive sectors. Global Circulation Models (GCM) routinely produce ensemble Seasonal Climate Forecasts (SCFs) but suffer from issues like low forecast resolution and skills. To address these issues in this study, we introduce a post-processing method, Quantile Ensemble Bayesian Model Averaging (QEBMA). It utilises quantiles from a GCM ensemble forecast to create a pseudo-ensemble forecast. Through their reasonable linear relationships with observations, each pseudo-member connects a hurdle distribution with a point mass at zero for dry months and a gamma distribution for wet months. These distributions are mixed to construct a forecast probability distribution with their weights, proportional to the quantiles’ historical forecast performance. QEBMA is applied to three GCMs, including GloSea5 from the United Kingdom, ECMWF from Europe and ACCESS-S1 from Australia, for monthly precipitation forecasts in 32 locations across four climate zones in Australia. Leave-one-month-out cross-validation results illustrate that QEBMA enhances forecast skills compared to raw GCMs and other post-processing techniques, including quantile mapping and Extended Copula Post-Processing (ECPP), for forecast lead time of 0 to 2 months, based on five metrics. The skill improvements achieved by QEBMA are often statistically significant, particularly when compared to raw GCM forecasts across the 32 study locations. Among these post-processing models, only QEBMA consistently outperforms the SCF benchmark climatology, offering a promising alternative for improving seasonal precipitation forecasts.

Projected precipitation and temperature changes in the Middle East—West Asia using RegCM4.7 under SSP scenarios

Abstract

The projection of precipitation changes and the year of surpassing a 1, 2, 3, 4, and 5 °C warming above pre-industrial levels in the Middle East – West Asia (MEWA) during 2026–2100 was conducted using dynamical downscaling of the Regional Climate Modeling version 4.7 (RegCM4.7) under Shared Socio-economic Pathways (SSPs) scenarios. Two significant changes in annual precipitation were identified compared to the baseline period of 1990–2014: a decrease in the Mediterranean Basin (MB) and an increase in the Persian Gulf- the Gulf of Oman -east of the Arabian Peninsula region (POA). The above patterns were also detected during the spring of 2026–2050. However, a decrease in precipitation is anticipated around the Persian Gulf (PG) during 2076–2100. The precipitation patterns exhibit a decrease in the MB and east of it up to Iran during the summer. In contrast, there is an increase in precipitation in the POA. During autumn, precipitation increases (decreases) around the POA (MB). During the winter, there is an increase (decrease) in the precipitation of POA (from the MB to Iran). In the SSP5-8.5 scenario, a 2 °C (3 °C) warming is expected by 2050 (2068), about two (four) decades earlier than SSP2-4.5. A 4 °C (5 °C) warming is expected by 2081 (2092) in SSP5-8.5, but postponed beyond 2100 in SSP2-4.5. Out of all studied cities, Tehran is projected to experience the greatest decrease in precipitation and the highest increase in temperature. Meanwhile, Abu Dhabi is expected to encounter the greatest precipitation increase and the lowest temperature rise.

From regional climate models to usable information

Abstract

Today, a major challenge for climate science is to overcome what is called the “usability gap” between the projections derived fromclimate models and the needs of the end-users. Regional Climate Models (RCMs) are expected to provide usable information concerning a variety of impacts and for a wide range of end-users. It is often assumed that the development of more accurate, more complex RCMs with higher spatial resolution should bring process understanding and better local projections, thus overcoming the usability gap. In this paper, I rather assume that the credibility of climate information should be pursued together with two other criteria of usability, which are salience and legitimacy. Based on the Swiss climate change scenarios, I study the attempts at meeting the needs of end-users and outline the trade-off modellers and users have to face with respect to the cascade of uncertainty. A conclusion of this paper is that the trade-off between salience and credibility sets the conditions under which RCMs can be deemed adequate for the purposes of addressing the needs of end-users and gearing the communication of the projections toward direct use and action.

Spatiotemporal evolution characteristics and driving forces of vegetation cover variations in the Chengdu-Chongqing region of China under the background of rapid urbanization

Abstract

The research on the spatiotemporal changes and driving factors of ecosystems in rapidly urbanizing regions has always been a topic of widespread concern. As the fourth pole of China’s economic development, the research on the Chengdu-Chongqing region has reference significance for the urbanization process of developing countries such as India, Brazil, and South Africa.The normalized difference vegetation index (NDVI) has been widely applied in studies of plant and ecosystem changes. Based on MODIS NDVI data from 2001 to 2020 and meteorological data of the same period, this study reveals the evolution of NDVI in the Chengdu-Chongqing region from three aspects: the spatiotemporal variation characteristics of NDVI, the prediction of future trends in vegetation coverage, and the response of vegetation to climate change and human activities. During the period of plant growth, the mean NDVI achieved a value of 0.78, and the vegetation coverage rate is increasing year by year. According to the Hurst index, the future NDVI in Chengdu-Chongqing region will tend to decrease, and its trend is opposite to that of the past period of time. The Chengdu-Chongqing region vegetation positively affected by human activities is greater than those negatively affected, and in terms of vegetation degradation, the impact of human activities is greater than climate change.

Downscaling atmospheric emission inventories with “top–down” approach: the support of the literature in choosing proxy variables

Abstract

The management and improvement of air quality are global challenges aimed at protecting human health and environmental resources. For this purpose, in addition to legislative and scientific indications, numerous tools are available: measurement methods and tools for estimating and forecasting. As a collection of data presenting an emission of a pollutant (to air), emission inventories support the knowledge of sources impacting air quality by estimating atmospheric emissions within a specific (wide or limited) reference area. There are several methodological approaches for their definition, which can be classified into bottom–up or top–down methods. This paper aims to review the methodological approaches described in the literature that apply the top–down approach for the disaggregation of atmospheric emissions with high spatial and temporal resolution. The proxy variables used to apply this approach are identified, as well as the spatial and temporal resolution obtained by the authors. The results show that population density and land use are the most common parameters with respect to most of the emission sources and for numerous atmospheric pollutants. The spatial resolution of the disaggregation described in the literature varies from a few hundred metres to several kilometres, in relation to the territorial extension of the study areas. The results of the review help support the selection of the best and most popular proxy variables used to scale emissions inventories.

Defining national net zero goals is critical for food and land use policy

Abstract

The identification of agriculture and land use configurations that achieve net zero (NZ) greenhouse gas emissions is critical to inform appropriate land use and food policy, yet national NZ targets lack consistent definitions. Here, 3000 randomised scenarios projecting future agricultural production and compatible land use combinations in Ireland were screened using ten NZ definitions. When aggregating carbon dioxide, methane, and nitrous oxide emissions using various methods, 1–85% of scenarios met NZ criteria. Despite considerable variation, common actions emerged across definitions, including high rates of afforestation, organic soil re-wetting, and cattle destocking. Ambitious technical abatement of agricultural emissions moderated, but could not substitute, these actions. With abatement, 95th percentile milk output varied from 11–91% of 2021 output, but was associated with reductions of up to 98% in suckler-beef production, and a 47–387% increase in forest cover. Achieving NZ will thus require transformation of Ireland’s land sector. Lagging land use change effects require urgent action, but sustaining a just transition will require visioning of future NZ land use combinations supporting a sustainable and resilient food system, alongside an expanding circular bioeconomy. We provide new insight into the sensitivity of such visioning to NZ definitions, pointing to an urgent need for international consensus on the accounting of methane emissions in NZ targets.

Exploring Climate Variables and Drought Patterns: A Comprehensive Trend Analysis and Evaluation of Beas Basin in Western Himalaya

Abstract

The complex topography of the Himalayan region makes it difficult to analyze its climatic variables over the region. The study has been carried out to identify the trends in climate variables and drought analysis over the Beas River basin in the western Himalayas. To understand the impact of changing climate on the Beas River basin, five downscaled global circulation models (GCMs) were used, namely BNU-ESM, Can-ESM2, CNRM CM5, MPI-ESM MR, and MPI-ESM LR. These GCMs were obtained for two representative concentration pathway (RCP) scenarios: 4.5, which represents the normal scenario, and 8.5, which represents the most extreme scenario for anticipated concentrations of carbon and greenhouse gases. The multi-model ensemble (MME) of these 5 GCMs were used to project rainfall and temperature. Further Innovative Trends Analysis (ITA) and modified Mann–Kendell (mMK) trend tests have been used for trend analysis at a 5% significance level. The drought pattern in the future timescale of the ensembled model is calculated using the Standardised Precipitation Index (SPI) for both RCPs. The ITA, Mann–Kendell, and Sen’s slope trends showed decreased precipitation under RCP 4.5 in the Manali region and showed an increasing trend for the remaining locations under both scenarios. Furthermore, SPI values showed frequent droughts under both RCPs. The study outcomes will serve as a scientific foundation for the sustainability of water resources and agricultural output in arid inland regions vulnerable to changing climate.