Projection of future precipitation, air temperature, and solar radiation changes in southeastern China

Abstract

Evidence of climate change can be observed in multiple climate variables, including air temperature rises and precipitation pattern changes. To manage water resources and agriculture effectively, it's important to project climate variables' changes at the local level, as these changes can vary depending on the specific area. The baseline weather data trend was analyzed using the percentage change (PC) method and the Innovative Trend Analysis (ITA) technique at three cluster levels: cluster 1 (PC: 0–20%), cluster 2 (PC: 21–80%), and cluster 3 (PC: 81–100%). The precipitation (Prec.), maximum (Tmax), and minimum (Tmin) temperatures showed downward trends in 9, 4, and 6 stations out of 24 stations, respectively. The SDSM model performed best in predicting Prec., while the LARS-WG model was more effective in predicting Tmax, Tmin, and solar radiation (SR). The average monthly Prec. percentage change shows both rising and falling trends in different weather areas for all three time periods (2040, 2060, and 2090) and for both RCPs (RCP4.5 and RCP8.5). In contrast to precipitation, both Tmax and Tmin consistently showed an upward trend across all meteorological stations for both RCPs and three-time frames. Across the four distinct plain regions, the overall projection suggests a slight increase in precipitation. The study predicts the highest increase in precipitation to occur in June across all meteorological stations. Seasonally, the greatest increase in precipitation is projected during summer (JJA) by 5.10%, while the largest decrease is expected during winter (DJF) by 3.29%. Additionally, precipitation variability shows an increase from RCP4.5 to RCP8.5 and from near-term (2040) to long-term (2090), with the northern Jiangsu Plain exhibiting the highest variation. The biggest rise in Tmax/Tmin was observed at RCP 8.5, by 2.69/2.39 °C, and in the long term (2090), by 3.25/2.86 °C. This was compared to RCP 4.5 by 1.73/1.51 °C, in the near term (2040) by 1.24/1.08 °C, and in the mid-term (2060) by 2.14/1.90 °C. The highest increase in Tmax is expected compared to Tmin, leading to the highest diurnal temperature (DTR) at all three periods and both RCPs. Seasonally, the highest increase is projected in the autumn for both Tmax and Tmin. Similar to Tmax and Tmin, the longest time period (2090) exhibits the highest increase in solar radiation, followed by the midterm (2060) and then the short term (2040). Unlike Tmax and Tmin, the highest increase in SR is predicted during the summer season (JJA), while the lowest increase is projected during the winter season (DJF). The future projections highlight the expectation of a wettest and hottest summer, along with the driest and coldest winter. These findings provide valuable insights for water resource planners, agricultural managers, and policymakers, as these climate variables play a significant role in crop production and water allocation decisions.

Projection of future precipitation, air temperature, and solar radiation changes in southeastern China

Abstract

Evidence of climate change can be observed in multiple climate variables, including air temperature rises and precipitation pattern changes. To manage water resources and agriculture effectively, it's important to project climate variables' changes at the local level, as these changes can vary depending on the specific area. The baseline weather data trend was analyzed using the percentage change (PC) method and the Innovative Trend Analysis (ITA) technique at three cluster levels: cluster 1 (PC: 0–20%), cluster 2 (PC: 21–80%), and cluster 3 (PC: 81–100%). The precipitation (Prec.), maximum (Tmax), and minimum (Tmin) temperatures showed downward trends in 9, 4, and 6 stations out of 24 stations, respectively. The SDSM model performed best in predicting Prec., while the LARS-WG model was more effective in predicting Tmax, Tmin, and solar radiation (SR). The average monthly Prec. percentage change shows both rising and falling trends in different weather areas for all three time periods (2040, 2060, and 2090) and for both RCPs (RCP4.5 and RCP8.5). In contrast to precipitation, both Tmax and Tmin consistently showed an upward trend across all meteorological stations for both RCPs and three-time frames. Across the four distinct plain regions, the overall projection suggests a slight increase in precipitation. The study predicts the highest increase in precipitation to occur in June across all meteorological stations. Seasonally, the greatest increase in precipitation is projected during summer (JJA) by 5.10%, while the largest decrease is expected during winter (DJF) by 3.29%. Additionally, precipitation variability shows an increase from RCP4.5 to RCP8.5 and from near-term (2040) to long-term (2090), with the northern Jiangsu Plain exhibiting the highest variation. The biggest rise in Tmax/Tmin was observed at RCP 8.5, by 2.69/2.39 °C, and in the long term (2090), by 3.25/2.86 °C. This was compared to RCP 4.5 by 1.73/1.51 °C, in the near term (2040) by 1.24/1.08 °C, and in the mid-term (2060) by 2.14/1.90 °C. The highest increase in Tmax is expected compared to Tmin, leading to the highest diurnal temperature (DTR) at all three periods and both RCPs. Seasonally, the highest increase is projected in the autumn for both Tmax and Tmin. Similar to Tmax and Tmin, the longest time period (2090) exhibits the highest increase in solar radiation, followed by the midterm (2060) and then the short term (2040). Unlike Tmax and Tmin, the highest increase in SR is predicted during the summer season (JJA), while the lowest increase is projected during the winter season (DJF). The future projections highlight the expectation of a wettest and hottest summer, along with the driest and coldest winter. These findings provide valuable insights for water resource planners, agricultural managers, and policymakers, as these climate variables play a significant role in crop production and water allocation decisions.

Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts

Abstract

Despite the maturity of ensemble numerical weather prediction (NWP), the resulting forecasts are still, more often than not, under-dispersed. As such, forecast calibration tools have become popular. Among those tools, quantile regression (QR) is highly competitive in terms of both flexibility and predictive performance. Nevertheless, a long-standing problem of QR is quantile crossing, which greatly limits the interpretability of QR-calibrated forecasts. On this point, this study proposes a non-crossing quantile regression neural network (NCQRNN), for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing. The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer, which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer, through a triangular weight matrix with positive entries. The empirical part of the work considers a solar irradiance case study, in which four years of ensemble irradiance forecasts at seven locations, issued by the European Centre for Medium-Range Weather Forecasts, are calibrated via NCQRNN, as well as via an eclectic mix of benchmarking models, ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models. Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration, amongst all competitors. Furthermore, the proposed conception to resolve quantile crossing is remarkably simple yet general, and thus has broad applicability as it can be integrated with many shallow- and deep-learning-based neural networks.

Integrated geospatial approach for adaptive rainwater harvesting site selection under the impact of climate change

Abstract

The impact of global climate change on water resources is a pressing concern, particularly in arid and semi-arid regions, where water shortages are becoming increasingly severe. Rainwater harvesting (RWH) offers a promising solution to address these challenges. However, the process of selecting suitable RWH sites is complex. This paper introduces a comprehensive methodology that leverages various technologies and data sources to identify suitable RWH locations in the northern region of Iraq, considering both historical and future scenarios. The study employs remote sensing and geographic information systems to collect and process geospatial data, which are essential for the site selection process. AHP is utilized as a decision-making tool to assess and rank potential RWH locations based on multiple criteria, helping to prioritize the most suitable sites. The WLC approach is used to combine and weigh various factors, enabling a systematic evaluation of site suitability. To account for the uncertainty associated with future climate conditions, a stochastic weather generator is employed to simulate historical and future precipitation data for period (1980–2022) and (2031–2100). This ensures that the assessment considers changing climate patterns. Historical precipitation values ranged from 270 to 490 mm, while future projections indicate a decrease, with values varying from 255 to 390 mm. This suggests a potential reduction in available water resources due to climate change. The runoff for historical rainfall values ranged from 190 mm (poor) to 490 mm (very good). In the future projections, runoff values vary from 180 mm (very poor) to 390 mm (good). This analysis highlights the potential impact of reduced precipitation on water availability. There is a strong correlation between rainfall and runoff, with values of 95% for historical data and 98.83% for future projections. This indicates that changes in precipitation directly affect water runoff. The study incorporates several criteria in the model, including soil texture, historical and future rainfall data, land use/cover, slope, and drainage density. These criteria were selected based on the nature of the study region and dataset availability. The suitability zones are classified into four categories for both historical potential and future projections of RWH zones: very high suitability, covering approximately 8.2%. High suitability, encompassing around 22.6%. Moderate suitability, constituting about 37.4%. Low suitability, accounting for 31.8% of the study region. For the potential zones of RWH in the future projection, the distribution is as follows: very high suitability, approximately 6.1%. High suitability, around 18.3%. Moderate suitability, roughly 31.2%. Low suitability, making up about 44.4% of the study region. The research's findings have significant implications for sustainable water resource management in the northern region of Iraq. As climate change exacerbates water scarcity, identifying suitable RWH locations becomes crucial for ensuring water availability. This methodology, incorporating advanced technology and data sources, provides a valuable tool for addressing these challenges and enhancing the future of water management to face of climate change. However, more investigations and studies need to be conducted in near future in the study region.

Non-crossing Quantile Regression Neural Network as a Calibration Tool for Ensemble Weather Forecasts

Abstract

Despite the maturity of ensemble numerical weather prediction (NWP), the resulting forecasts are still, more often than not, under-dispersed. As such, forecast calibration tools have become popular. Among those tools, quantile regression (QR) is highly competitive in terms of both flexibility and predictive performance. Nevertheless, a long-standing problem of QR is quantile crossing, which greatly limits the interpretability of QR-calibrated forecasts. On this point, this study proposes a non-crossing quantile regression neural network (NCQRNN), for calibrating ensemble NWP forecasts into a set of reliable quantile forecasts without crossing. The overarching design principle of NCQRNN is to add on top of the conventional QRNN structure another hidden layer, which imposes a non-decreasing mapping between the combined output from nodes of the last hidden layer to the nodes of the output layer, through a triangular weight matrix with positive entries. The empirical part of the work considers a solar irradiance case study, in which four years of ensemble irradiance forecasts at seven locations, issued by the European Centre for Medium-Range Weather Forecasts, are calibrated via NCQRNN, as well as via an eclectic mix of benchmarking models, ranging from the naïve climatology to the state-of-the-art deep-learning and other non-crossing models. Formal and stringent forecast verification suggests that the forecasts post-processed via NCQRNN attain the maximum sharpness subject to calibration, amongst all competitors. Furthermore, the proposed conception to resolve quantile crossing is remarkably simple yet general, and thus has broad applicability as it can be integrated with many shallow- and deep-learning-based neural networks.

High-resolution projections of outdoor thermal stress in the twenty-first century: a Tasmanian case study

Abstract

To adapt to Earth’s rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air temperature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incorporating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart, Australia for 2040–2059, compared to the historical period 1990–2005. We present the first hourly metre-scale projections of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled General Circulation Models. These outputs drive the Solar and LongWave Environmental Irradiance Geometry model at metre scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.

High-resolution projections of outdoor thermal stress in the twenty-first century: a Tasmanian case study

Abstract

To adapt to Earth’s rapidly changing climate, detailed modelling of thermal stress is needed. Dangerous stress levels are becoming more frequent, longer, and more severe. While traditional measurements of thermal stress have focused on air temperature and humidity, modern measures including radiation and wind speed are becoming widespread. However, projecting such indices has presented a challenging problem, due to the need for appropriate bias correction of multiple variables that vary on hourly timescales. In this paper, we aim to provide a detailed understanding of changing thermal stress patterns incorporating modern measurements, bias correction techniques, and hourly projections to assess the impact of climate change on thermal stress at human scales. To achieve these aims, we conduct a case study of projected thermal stress in central Hobart, Australia for 2040–2059, compared to the historical period 1990–2005. We present the first hourly metre-scale projections of thermal stress driven by multivariate bias-corrected data. We bias correct four variables from six dynamically downscaled General Circulation Models. These outputs drive the Solar and LongWave Environmental Irradiance Geometry model at metre scale, calculating mean radiant temperature and the Universal Thermal Climate Index. We demonstrate that multivariate bias correction can correct means on multiple time scales while accurately preserving mean seasonal trends. Changes in mean air temperature and UTCI by hour of the day and month of the year reveal diurnal and annual patterns in both temporal trends and model agreement. We present plots of future median stress values in the context of historical percentiles, revealing trends and patterns not evident in mean data. Our modelling illustrates a future Hobart that experiences higher and more consistent numbers of hours of heat stress arriving earlier in the year and extending further throughout the day.

CMIP6 precipitation and temperature projections for Chile

Abstract

Precipitation and near-surface temperature from an ensemble of 36 new state‐of‐the‐art climate models under the Coupled Model Inter‐comparison Project phase 6 (CMIP6) are evaluated over Chile’s climate. The analysis is focused on four distinct climatic subregions: Northern Chile, Central Chile, Northern Patagonia, and Southern Patagonia. Over each of the subregions, first, we evaluate the performance of individual global climate models (GCMs) against a suit of precipitation and temperature observation-based gridded datasets over the historical period (1986–2014) and then we analyze the models’ projections for the end of the century (2080–2099) for four different shared socioeconomic pathways scenarios (SSP). Although the models are characterized by general wet and warm mean bias, they reproduce realistically the main spatiotemporal climatic variability over different subregions. However, none of the models is best across all subregions for both precipitation and temperature. Moreover, among the best performing models defined based on the Taylor skill score, one finds the so-called “hot models” likely exhibiting an overestimated climate sensitivity, which suggests caution in using these models for accessing future climate change in Chile. We found robust (90% of models agree in the direction of change) projected end-of-the-century reductions in mean annual precipitation for Central Chile (~ − 20 to ~ − 40%) and Northern Patagonia (~ − 10 to ~ − 30%) under scenario SSP585, but changes are strong from scenario SSP245 onwards, where precipitation is reduced by 10–20%. Northern Chile and Southern Patagonia show non-robust changes in precipitation across the models. Yet, future near-surface temperature warming presented high inter-model agreement across subregions, where the greatest increments occurred along the Andes Mountains. Northern Chile displays the strongest increment of up to ~ 6 °C in SSP585, followed by Central Chile (up to ~ 5 °C). Both Northern and Southern Patagonia show a corresponding increment by up to ~ 4 °C. We also briefly discuss about the environmental and socio-economic implications of these future changes for Chile.

Uncertainty assessment of future climate change using bias-corrected high-resolution multi-regional climate model datasets over East Asia

Abstract

The quantitative assessment of the uncertainty components of future climate projections is critical for decision-makers and organizations to establish climate change adaptation and mitigation strategies at regional or local scales. This is the first study in which the changes in the uncertainty components of future temperature and precipitation projections are quantitatively evaluated using multiple regional climate models over East Asia, vulnerable to future climate change. For temperature, internal variability and model uncertainty were the main factors affecting the near-term projections. The scenario uncertainty continued to increase and was estimated to be the dominant factor affecting the uncertainty after the mid-term projections. Although precipitation has the same main uncertainty factors as the temperature in the near-term projections, it considerably differs from temperature because the internal variability notably contributes to the fraction to the total variance, even in the long-term projections. The internal variability of the temperature and precipitation in the near-term projections were predicted to be larger in Korea than that in East Asia. This was confirmed by regional climate models as well as previous studies using global climate models as to the importance of internal variability at smaller regional scales during the near-term projections. This study is meaningful because it provides new possibilities with respect to the consideration of climate uncertainties to the establishment of climate change policies in more detail on the regional scale.

Assessment of the wind power density over South America simulated by CMIP6 models in the present and future climate

Abstract

Expanding the South American renewable energy matrix to ensure more sustainable socio-economic development, mitigate the climate change effects, and meet the targets set in the Paris Agreement is crucial. Hence, this study sought to estimate South America’s wind speed and wind power density alterations projected by eight global climate models (GCMs) from the Coupled Model Intercomparison Project—Phase 6 (CMIP6). To this end, we applied statistical downscaling and bias correction to the GCMs outputs through the Quantile Delta Mapping method and assessed the projected changes in wind power in future climate under the Shared Socioeconomic Pathways (SSPs) SSP2-4.5 and SSP5-8.5 emission scenarios. ERA5 reanalysis data from 1995 to 2014 validated the models’ historical simulations. The CMIP6 multi-model ensemble indicated an approximate 25–50% increase in wind power density in sectors such as Northeast and South Brazil and growing wind power in regions such as Argentine Patagonia, northern Venezuela, and portions of Uruguay, Bolivia, and Paraguay. Estimates of the wind power growth for the twenty-first century in those regions reiterated their potential performance in the historical period. For the SSP5-8.5 emission scenario, the ensemble projections indicated even more favorable wind power conditions in the sectors mentioned. However, individual projections of wind intensity anomalies obtained by each ensemble member showed a large spread among the GCMs, evidencing the uncertainties associated with the prospects of change in wind power on the continent. Furthermore, this study has presented a first analysis of CMIP6 projections for South American wind power generation, providing relevant information to the energy sector decision-makers.