Abstract
Background
The COVID-19 pandemic has spurred the growth of a global infodemic. In order to combat the COVID-19 infodemic, it is necessary to understand what kinds of misinformation are spreading. Furthermore, various local factors influence how the infodemic manifests in different countries. Therefore, understanding how and why infodemics differ between countries is a matter of interest for public health. This study aims to elucidate and compare the types of COVID-19 misinformation produced from the infodemic in the US and Japan.
Methods
COVID-19 fact-checking articles were obtained from the two largest publishers of fact-checking articles in each language. 1,743 US articles and 148 Japanese articles in their respective languages were gathered, with articles published between 23 January 2020 and 4 November 2022. Articles were analyzed using the free text mining software KH Coder. Exploration of frequently-occurring words and groups of related words was carried out. Based on agglomeration plots and prior research, eight categories of misinformation were created. Lastly, coding rules were created for these eight categories, and a chi-squared test was performed to compare the two datasets.
Results
Overall, the most frequent words in both languages were related to health-related terms, but the Japan dataset had more words referring to foreign countries. Among the eight categories, differences with chi-squared p ≤ 0.01 were found after Holm-Bonferroni p value adjustment for the proportions of misinformation regarding statistics (US 40.0% vs. JP 25.7%, ϕ 0.0792); origin of the virus and resultant discrimination (US 7.0% vs. JP 20.3%, ϕ 0.1311); and COVID-19 disease severity, treatment, or testing (US 32.6% vs. JP 45.9%, ϕ 0.0756).
Conclusions
Local contextual factors were found that likely influenced the infodemic in both countries; representations of these factors include societal polarization in the US and the HPV vaccine scare in Japan. It is possible that Japan’s relative resistance to misinformation affects the kinds of misinformation consumed, directing attention away from conspiracy theories and towards health-related issues. However, more studies need to be done to verify whether misinformation resistance affects misinformation consumption patterns this way.