Month: September 2024
Fluid intelligence but not need for cognition is associated with attitude change in response to the correction of misinformation
Abstract
Misinformation can profoundly impact an individual’s attitudes—sometimes even after the misinformation has been corrected. In two preregistered experiments (N1 = 355, N2 = 725), we investigated whether individual differences in the ability and motivation to process information thoroughly influence the impact of misinformation in a news media context. More specifically, we tested whether fluid intelligence and need for cognition predicted the degree to which individuals who were exposed to misinformation changed their attitudes after receiving a correction message. We found consistent evidence that higher fluid intelligence is associated with a more pronounced correction effect, while need for cognition did not have a significant effect. This suggests that integrating a correction message with a previously encountered piece of misinformation can be challenging and that correction messages consequently need to be communicated in a way that is accessible to a broad audience.
Following the Science in the Age of COVID-19
Abstract
This article discusses the complexity of the relationship between “law,” “science,” and “clinical practice” in the age of COVID-19.
Sediment load assessments under climate change scenarios and a lack of integration between climatologists and environmental modelers
Abstract
Increasing precipitation accelerates soil erosion and boosts sediment loads, especially in mountain catchments. Therefore, there is significant pressure to deliver plausible assessments of these phenomena on a local scale under future climate change scenarios. Such assessments are primarily drawn from a combination of climate change projections and environmental model simulations, usually performed by climatologists and environmental modelers independently. Our example shows that without communication from both groups the final results are ambiguous. Here, we estimate sediment loads delivered from a Carpathian catchment to a reservoir to illustrate how the choice of meteorological data, reference period, and model ensemble can affect final results. Differences in future loads could reach up to even 6000 tons of sediment per year. We suggest there must be a better integration between climatologists and environmental modelers, focusing on introducing multi-model ensembles targeting specific impacts to facilitate an informed choice on climate information.