Abstract
A mechanism is proposed for dynamic grain growth (DGG) by subgrain boundaries driving grain-boundary migration. This mechanism is evaluated against data from an interstitial-free steel tested in tension at 850 °C and a true-strain rate of \(10^{-4}\) s \(^{-1}\) and rapidly quenched to preserve microstructures evolved during deformation. Tensile tests produced steady-state flow, distinct subgrains, and rapid DGG. Static annealing alone produced static grain growth (SGG) that was much slower than DGG. Electron backscatter diffraction (EBSD) provided grain size and orientation measurements. High-resolution electron backscatter diffraction (HR-EBSD) was used to accurately measure subgrain sizes and subgrain boundary misorientations. The average grain size increased linearly with strain during DGG, but the average subgrain size remained constant during straining. The average subgrain boundary misorientation increased with strain, initially rapidly and then slowly. The dihedral angle imposed in grain boundaries by intersecting subgrain boundaries decreased with increasing subgrain boundary misorientation, which supports the proposed mechanism for DGG. The driving pressure for grain-boundary migration from subgrain boundaries is estimated to be approximately one order in magnitude greater than that from dislocation density reduction under the conditions examined.